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Stability of Non-Linear Integrable Accelerator* 

I. Batalov#, A. Valishev, Fermi National Accelerator Laboratory, Batavia IL, 60510, U.S.A. 

Abstract 

The stability of non-linear Integrable Optics Test Accelerator (IOTA) model developed in [1] was tested. The 
area of the stable region in transverse coordinates and the maximum attainable tune spread were found as a 
function of non-linear lens strength. Particle loss as a function of turn number was analyzed to determine whether 
a dynamic aperture limitation present in the system. The system was also tested with sextupoles included in the 
machine for chromaticity compensation. A method of evaluation of the beam size in the linear part of the 
accelerator was proposed. 

Introduction 

The non-linear Integrable Optics Test Accelerator described in [1] is comprised of four periods (Figure 1). Each 
period consists of a linear focusing block and non-linear lens block. 

  
Figure 1. Layout of the non-linear Integrable Optics 
Test Accelerator. Quadrupoles are shown as green 
rectangles, bending magnets – as white trapezoids. 

Figure 2. Map of nonlinear betatron resonances. 

 

The advantage of this system in comparison with the conventional linear optics is the very large possible betatron 
tune spead and stablility against perturbations. Linear systems should operate away from resonances (Figure 2), 
which limits the maximum attainable tune spread. However, the wider tune spread the more stable is the beam 
against coherent instabilities due to Landau damping. In linear accelerators, the tune spread is generated by 
adding multipole magnets, which limits the dynamic aperture. In a non-linear integrable system the wide tune 
spread could be achieved without the excitation of resonances. Because of non-linear elements betatron tune is a 
function of oscillation amplitude. 

The goals of this work are: 

1. Calculate the stable area of transverse oscillations in the IOTA design with realistic aperture restrictions. 
2. Determine whether a dynamic aperture limitation is present. 
3. Calculate the betatron tune spreads that could be achieved in the system. 
4. Study the effect of the chromaticity correction sextupoles on particle stability and maximum tune 

spread. 
All simulations were carried out using a special version of MAD-X [2], in which the non-linear lens was 
implemented. 
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Apertures. Particle motion 
In Table 1 the information about apertures used in the machine is shown. Simulations show that almost all lost 
particles are dying on the aperture of quadrupoles. Therefore this aperture is limiting. Enlarging the quadrupole 
apertures may increase the stable region, but construction of such quadrupoles requires more expensive 
superconductive technologies. 

Element aperture shape dimensions 
quadrupole circle 2 inches in diameter 
dipole rectangle 2x1 inches 
non-linear lens ellipse x half-axis: 0.7×c×β 

y half-axis: 7×c×β 
Table 1. Description of element apertures in non-linear accelerator 
model. 

Figure 3 shows the trajectories of particles in y-y’ phase space at two different values of the non-linear lens 
strength. In the case when tn<0.5 the phase space trajectories go around the origin of coordinates. But if tn>0.5, 
particle trajectories do not encircle the origin of coordinates, linearized system is unstable and the beta functions 
cannot be found. Thus, the amplitudes of particle oscillations can only be found by particle tracking. 

  
a) b) 

Figure 3. Particle trajectories in y-y’ phase space. a) strength of non-linear lens tn = 0.4; b) tn = 1.0 

 

Stable area. 1-D case 

The first question that arises from aperture limitations is how the size of the stable region depend on the strength 
of non-linear lens. To answer it all the initial coordinates of the particle except one (‘x ‘or ‘y’) were set to zero. 
The observation point was selected at the center of the non-linear lens block. The non-zero coordinate was varied 
to achieve maximum amplitude oscillation equal to the aperture. Figure 4 represents the maximum amplitude of 
particles’ oscillations inside of non-linear lens as a function of the lens strength. 
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a) b) 

Figure 4. a) maximum oscillation amplitude of survived particles along x-axis at the center of non-linear lens 
block; b) maximum and minimal amplitude along y-axis. 

For the horizontal motion the maximum amplitude decreases with the increase of non-linear lens strength. For 
vertical motion there are 2 critical values: the maximum oscillation amplitude, which is equal to maximum initial 
coordinate, and minimum initial coordinate. The minimum initial coordinate can be explained with particles’ 
trajectories in y-y’ phase space (Figure 5). The non-linear potential can be represented by an expansion: 
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The first term is the quadrupole potential, which focuses in x-direction and defocuses in y-direction. Therefore, 
the maximum deviation of a particle with small initial coordinate is bigger that of those with larger initial 
coordinate.  

 

Figure 5. Trajectories of two particles at the center of 
non-linear lens block. Inner trajectory corresponds to 
higher initial y-coordinate, outer trajectory – to lower 
initial y-coordinate. Other coordinates are zero. 

Stable area. 2-D case 

The case with only one non-zero initial coordinate does not describe the whole pool of initial coordinates. To see 
the real picture of stable area one should set at least 2 non-zero coordinates. Although each particle has 4 
coordinates (x, x’, y, y’), there is coupling between them. In Figure 5 one can see particle’s trajectory in y-y’ 
phase plane. The similar picture can be build for x-x’ plane. This trajectory is the same for any particle with the 
initial coordinates belonging to the trajectory. Therefore, the initial point can be put anywhere on the trajectory, 
and we choose it in the x-y plane. 
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Figure 6 represents the stable areas for the particles with non-zero ‘x‘ and ‘y’ initial coordinates for different 
strengths of the non-linear lens. One can see that the stable area splits into two parts starting from some value of 
strength confirming the results of 1-D case. From this figure it is also clear that there is maximum strength of 
non-linear lens for which particles still survive. 

   
a) b) c) 

   
d) e) f) 

Figure 6. x-y planes of initial coordinates of lost (red) and survived (green) particles for various non-linear 
lens strengths (tn): a) tn=0; b) tn=0.5 c) tn=1.0; d) tn=1.5; e) tn=2.0; f) tn=2.5 

There are 2 possible reasons why particles die: mechanical and dynamic aperture. The first one is caused by 
geometrical restrictions of the machine. The second one is caused by non-regular chaotic motion. If the particle is 
lost due to mechanical aperture, it will die quickly, in 1-100 turns. If dynamic aperture is present in the system, 
particles will be lost even after large number of turns. Table 2 presents the number of lost particles as a function 
of turn number. In the case of zero non-linear lens strength there can be no dynamic aperture because the system 
is totally linear and ideal. Almost all particles are dying before the first 100 turns. Particle losses after larger 
number of turns can be explained by computational errors for the particles near the aperture and the number of 
such particles is comparatively small. Since for non-zero strength of the non-linear lens this number decreases, 
there is no dynamic aperture limitation present in the system.  

  number of lost particles 
tn turn 1-10 turn 10-100 turn 100-1000 turn 1000-2000 

0 5768 76 8 4 
0,5 5545 76 11 0 

1 5610 132 6 2 
1,5 6943 122 8 0 

2 8437 24 8 4 
2,5 9625 8 0 0 
2,7 10066 0 0 0 
Table 2. Number of lost particles as a function of turn interval and 
non-linear lens strength. 
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Fourier transform. Foot prints 

To describe the tune spread of the bunch in the accelerator, one moves from the physical coordinates to 
frequency domain by Fourier transformation. We select the main tune by finding the maximum of Fourier 
amplitude. Since this procedure is done for every particle in the bunch, one can plot all these maxima on the Qx-
Qy diagram. This picture is called the foot print and is shows the tune spread within the bunch. One of the 
examples of the foot print is shown in Figure 7. 

 

Figure 7. Foot print example for non-linear lens 
strength tn=1.5 

Because coordinates of the particles are observed at one point of the accelerator, the discrete Fourier transform 
cannot show all the frequencies adequately. It appears in reflections of foot print from the boundaries of the 
square [0,0.5]x[0,0.5] on the plot. Reflections also mean crossing of the integer and half-integer resonances that 
are important for us in order to test the system stability in these most unstable regions. To measure the full tune 
spread one should these reflections into account. So, the real foot print shown in Figure 7 will look like a 
triangle. 

Figure 8 presents the tune spread measured by the routine described above as a function of the non-linear lens 
strength. One can see that tune spreads for both x and y coordinates has maxima. The presence of these maxima 
is the result of interplay between the increasing tune shift and decreasing stable area as functions of non-linear 
lens strength. Although the tune spread eventually shrinks, the maximum value is much bigger than for linear 
accelerators. Therefore Landau damping should be significant and stability of the bunch to perturbations will be 
much stronger than in conventional linear systems. 

 

Figure 8. Qx and Qy tune spreads as functions of non-linear lens strength. 
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Effect of sextupoles on tune spread 

Sextupoles are used in accelerators to compensate the betatron tune chromaticity. Chromaticity appears in 
quadrupoles and it is negative: 
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Sextupole chromaticity is positive in one direction and negative in another : 
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Consequently, adding 2 sextupole families to the system at appropriate places with correct strengths can suppress 
the chromaticity of quadrupoles. But sextupoles also introduce a dynamic aperture in the system. This decreases 
the stable area, which results in particle losses at large numbers of turns (Figure 8). 

  
a) b) 

Figure 8. x-y planes of initial coordinates with sextupoles on. Lost particles are in red and survived in green. a) 
2048 turns; b) 65536 turns. 

To predict the influence of chromaticity sextupoles on the system stability, the tune spread change was analyzed. 
For this purpose the area of initial coordinates that corresponds to survived particles was truncated in order to 
exclude potentially unstable particles. Figure 9 presents tune spreads in x and y directions with and without 
sextupoles. It is seen from the plots that tune spread in x direction decreases when sextupoles are present while 
the tune spread in y direction does not change significantly. 
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a) b) 

Figure 9. Tune spreads with and without sextupoles as functions of non-linear lens strength. a) along x-axis; b) 
along y-axis. 

Beam size in machine arcs 

Although tracking is a reliable way to predict the beam size in a non-linear accelerator, it is very slow. When the 
strength of non-linear lens is less than 0.5, the beam size can be evaluated with the use of beta functions. This 
method is much faster than tracking and allows to carry out extensive simulations (for example, adjustment of 
quadrupole parameters to make beam size minimal). But for the non-linear lens strength larger than 0.5, this 
method becomes impossible because the linearized system is unstable. However, a convenient method is needed 
to describe the beam at least in the linear part of the accelerator. To do this the following method is proposed. 
First, the beam shape at the beginning of linear section is calculated by tracking with the accelerator arc replaced 
with an equivalent map. Then, an ellipsoid with minimal area is circumscribed over the beam phase portrait. 
Finally, the alpha and beta functions are derived from the shape of the ellipsoid and used as initial values to find 
alpha and beta functions throughout a linear part of accelerator. 

Figures 10, 11 and 12 present an implementation of this idea in 2D y-y’ phase space. All x and x’ coordinates in 
this case are equal to zero. In Figure 10 one can see two particle distributions inside the beam at the beginning of 
linear section. The shape shown in Fig. 10a is chosen to be more ellipse-like while the shape in Fig. 10b is 
chosen to be less ellipse-like. Both of these shapes were used to check the idea described above.  

  
a) b) 

Figure 10. Particle distribution at the beginning of linear section (y-y’ plane). a) ellipse-like shape; b) not 
ellipse-like shape. 

First, let us consider ellipse-like initial distribution. Figure 11a presents the comparison between the 
vertical beam size calculated by tracking and the square root of βy function calculated using the 
circumscribed ellipsoid. One can see that the plots coincide very well so the prediction of beam size given 
by beta-functions of circumscribed ellipsoid is accurate. Figure 11b presents squared maximum vertical 
beam size divided by emittance as a function of longitudinal coordinate. The 1st derivative of this function 
could be compared to 1st derivative of βy which can be found using the following expression:  
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α! = −β!’/2
α!   =   −1.38

    →     !!! = 2.77 

As one can see from the Figure 11b, (y2
max/ε)’ = 2.34 which is close to the value found with the usage of αy and 

βy of circumscribed ellipsoid. 

  
a) b) 

Figure 11. Case with ellipse-like initial distribution: a) vertical beam size computed by tracking and square root 
of beta-function throughout linear region; b) value of y2

max/ε at the beginning of linear region. Slope of the plot is 
proportional to alpha-function (α =  -β’/2). 

A similar comparison can be done for the case with non ellipse-like initial distribution (Fig. 10b). Figure 11a 
presents the vertical beam size and square root of βy of circumscribed ellipsoid. As one can see, the agreement 
between these values is worse than in the case with ellipse-like initial distribution but still satisfactory. Also in 
this case (y2

max/ε)’ = 4.04 and βy’ = 4.12. 

  
a) b) 

Figure 12. Case with non ellipse-like initial distribution: a) vertical beam size computed by tracking and square 
root of beta-function throughout linear region; b) value of y2

max/ε at the beginning of linear region. Slope of the 
plot is proportional to alpha-function (α =  -β’/2). 

Comparing ellipse-like and non ellipse-like cases one can mention that the better a circumscribed ellipse 
describes initial distribution, the better is proximity of finding the beam size by this method. 

The same operations were carried out with 4-D case, when all of coordinates (x, px, y, py) are non-zero. Figure 
13 presents the horizontal and vertical beam size and square root of βx and βy of circumscribed 4-D ellipsoid. One 
can see that the prediction of beam size given by βx and βy functions of circumscribed ellipsoid is accurate in this 

0	  

0.05	  

0.1	  

0.15	  

0.2	  

0.25	  

0.3	  

0	   2	   4	   6	   8	  

y,
	  m

et
er
s	  

s,	  meters	  
y_max	   sqrt(βy*ε)	  

y2max	  =	  2.34s	  -‐	  0.21	  

2.11	  

2.12	  

2.13	  

2.14	  

2.15	  

2.16	  

2.17	  

2.18	  

2.19	  

0.98	   0.99	   1	   1.01	   1.02	   1.03	  
y2

m
ax
/ε
,	  m

et
re
s	  

s,	  meters	  

0	  

0.005	  

0.01	  

0.015	  

0.02	  

0.025	  

0.03	  

0.035	  

0	   2	   4	   6	  

y,
	  m

et
er
s	  

s,	  meters	  sqrt(βy*ε)	   y_max	  

y2max	  =	  4.04s	  -‐	  0.87	  3.12	  

3.14	  

3.16	  

3.18	  

3.2	  

3.22	  

3.24	  

3.26	  

0.98	   0.99	   1	   1.01	   1.02	   1.03	  

y2
m
ax
/ε
,	  m

et
er
s	  

s,	  meters	  



	   9	  

case. The difference between beam size and squared root of beta function is even less than in 2-D case with non-
ellipse like shape of initial particle distribution (Fig. 12a). 

Figure 13.  Maximum ‘x’ and ‘y’ coordinates of the beam computed by tracking and square roots of βx and βy 
functions throughout linear region. 

Figure 14 presents the square beam size (‘x’ and ‘y’) divided by emittance as a function of longitudinal 
coordinate. For this case: 

(x2
max/εx)’ = 2.83 and βx’ = 2.91	  

(y2
max/εy)’ = 2.81 and βy’ = 2.85 

As one can see, the agreement of the 1st derivatives evaluated by tracking and using alpha-functions of 
circumscribed ellipsoid is also very good. 

 

Figure 14. Value of y2
max/ε at the beginning of linear region. Slope of the plot is proportional to alpha-function 

(αx,y =  -βx,y’/2). 

 

 

0	  

0.02	  

0.04	  

0.06	  

0.08	  

0.1	  

0.12	  

0.14	  

0	   1	   2	   3	   4	   5	   6	   7	   8	  

be
am

	  si
ze
,	  m

et
er
s	  

s,	  meters	  

xmax	   ymax	   sqrt(betax*emit)	   sqrt(betay*emit)	  

x	  =	  2.83s	  -‐	  0.43	  

y	  =	  2.81s	  -‐	  0.65	  2.1	  
2.15	  
2.2	  
2.25	  
2.3	  
2.35	  
2.4	  
2.45	  
2.5	  

0.985	   0.99	   0.995	   1	   1.005	   1.01	   1.015	   1.02	   1.025	  

x m
ax
2 /
ε x

 a
nd

 y
m
ax
2 /
ε y

,	  m
et
er
s	  

s,	  meters	  

x_max^2/εx	   y_max^2/εy	  



	   10	  

Conclusions 

1. The stable area of initial particle coordinates was analyzed as a function of non-linear lens strength. 
a. In a strong non-linear field, particles near the x-axis are typically lost at the physical aperture in 

quadrupoles; 
b. There is maximum strength of the non-linear lens for which particles survive. 

2. There is no dynamic aperture limitation present in the system. 
3. The found stable area is sufficient to observe an integer resonance crossing. 
4. Possible tune spreads that could be achieved in the machine were analyzed. Maximum tune spreads are 

much larger than those for linear accelerators. 
5. Chromaticity compensating sextupoles do not cause significant changes of the maximum attainable tune 

spread. 
6. Method for estimating the beam size in linear regions of non-linear accelerator was proposed and tested 

for 2D and 4D cases. The precision of this method allows its use to predict the beam size for the 
machine lattice design studies. 
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